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ABSTRACT 

This paper summarizes a new methodology to design sequential non-diagonal QFT controllers for multi-
input-multi-output MIMO systems with uncertainty, which is a central issue in UAV control systems. It 
also demonstrates the feasibility of that methodology to control the position and attitude of a 6x6 MIMO 
spacecraft with large flexible appendages. The last part of the paper introduces a new practical 
methodology to design robust controllers that work under a switching mechanism, going beyond the 
classical linear limitations and giving a solution for the well-known robustness-performance trade-off. 

1.0 INTRODUCTION 

Control of multivariable systems (multiple-input-multiple-output, MIMO) with model uncertainty is still 
one of the hardest problems that control engineers have to face in Unmanned Air Vehicle (UAV) real-
world applications. Input-output directionality, coupling among control loops, transmission zeros, pairing, 
etc. are some of the main complexities that define a MIMO system. Moreover, model uncertainties 
substantially increase such difficulties, making more restrictive the inherent performance limitations of the 
control system. In the last few decades a very significant amount of work in linear MIMO systems has 
been done. The first technique that made a quantitative synthesis of MIMO systems, taking into account 
quantitative bounds on the plant uncertainty and quantitative tolerances on the acceptable closed-loop 
system response, was the Quantitative Feedback Theory (QFT) [1]. In the last few years some new 
methods for non-diagonal (full matrix) multivariable QFT robust control system design have been 
introduced. The first part of the paper introduces a new methodology [2-6] that improves the current non-
diagonal MIMO QFT control techniques. The second part validates the new techniques by applying them 
to control the position and attitude of a 6x6 spacecraft with large flimsy appendages [7].  
 
Combining robust designs and stable switching, the control strategy could optimize the time response of 
the system by fast adaptation of the controller parameters during the transient response according to 
certain rules based on the amplitude of the error. The last part of the paper introduces a methodology to 
design a family of robust controllers able to go beyond the classical linear performance limitations. The 
methodology is based on both a new graphical stability criterion for switching linear systems and the 
robust quantitative feedback theory (QFT) [8].  

2.0 NON-DIAGONAL MIMO QFT CONTROL DESIGN METHODOLOGY [2-7] 

Control of multivariable systems (multiple-input-multiple-output, MIMO) with model uncertainty are still 
one of the hardest problems that the control engineer has to face in real-world applications. Three of the 
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main characteristics that define a MIMO system are the input and output directionality -different vectors to 
actuate U and to measure Y-; the coupling among control loops -some outputs yi can be influenced by 
several inputs ui, and some inputs ui can influence several outputs yi; and the transmission zeros of the 
plant matrix. 
 
In the last few decades a very significant amount of work in MIMO systems, too numerous to list here, has 
been done. Using MIMO QFT, Horowitz proposed to translate the original nxn MIMO problem into n 
separate quantitative multiple-input-single-output MISO problems, each with plant uncertainty, external 
disturbances and closed-loop tolerances derived from the original problem [1]. Two different approaches, 
the so-called sequential and non-sequential methods, consider in successive iterative steps an equivalent 
plant that either takes also into account the controllers designed in the previous steps, or only deals with 
the plant respectively. 
 
However, although such original MIMO QFT methods take the coupling among loops into account, they 
only propose the use of a diagonal controller G to govern the MIMO plant. This structure can be improved 
using non-diagonal controllers. In fact, a fully populated matrix controller allows the designer much more 
design flexibility to control MIMO plants than the classical diagonal controller structure. The use of the 
non-diagonal components can also ease the diagonal controller design problem. In the last few years some 
new methods for non-diagonal multivariable QFT robust control system design have been introduced. For 
the sake of clarity, this section summarizes a previous work [2-7] that extends the classical QFT diagonal 
controller design for MIMO plants with uncertainty to the fully populated matrix controller design. The 
work studies three cases: the reference tracking, the external disturbance rejection at plant input and the 
external disturbance rejection at plant output. It presents the definition of three specific coupling matrices 
(c1ij, c2ij, c3ij), one for each case, and introduces a sequential design methodology for non-diagonal QFT 
controllers. 
 

2.1 The Coupling Matrix 
The objective of this section is to define a measurement index (the coupling matrix) that allows one to 
quantify the loop interaction in MIMO control systems. Consider a nxn linear multivariable system -see 
Fig. 1-, composed of a plant P, a fully populated matrix controller G, a pre-filter F, a plant input 
disturbance transfer function Pdi, and a plant output disturbance transfer function Pdo, where P ∈ ℑP , ℑP 
is the set of possible plants due to uncertainty, and, 
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The reference vector r’ and the external disturbance vectors at plant input di’ and plant output do’ are the 
inputs of the system. The output vector y is the variable to be controlled.  
 
It is denoted *P  as the plant inverse so that, 
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where Λ is the diagonal part and B is the balance of P*; and Gd is the diagonal part and Gb is the balance of 
G. The next paragraphs introduce a measurement index to quantify the loop interaction in the three 
classical cases: reference tracking, external disturbances at plant input, and external disturbances at plant 
output. That index is called the coupling matrix and, depending on the case, shows three different 
expressions: C1, C2, C3 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Structure of a 2 Degree of Freedom MIMO System 

2.1.1 Tracking 

The transfer function matrix of the controlled system for the reference tracking problem, without any 
external disturbance, can be written as shown in Eq. (4), 
 

( ) '//
1 rFTrTrGPGPIy ryry ==+= −       (4) 

 
Using Eq. (2) and (3), Eq. (4) can be rewritten as, 
 

( ) ( ) ( )( )rTGBrGΛGΛIrGΛGΛIrT y/r
--

y/r bb
1-1

d
1

d
1-1

d
1 +−+++=

−−
 (5) 

 
In the expression of the closed-loop transfer function matrix of Eq. (5), it is possible to find two different 
terms: 
 
i. A diagonal term Ty/r_d,  

 

( ) d
1-1

d
1

y/r_d GΛGΛIT - −
+=                  (6) 

 
that presents a diagonal structure. Note that it does not depend on the non-diagonal part of the plant 
inverse B, nor on the non-diagonal part of the controller Gb. It is equivalent to n reference tracking SISO 
systems formed by plants equal to the elements of Λ-1 when the n corresponding parts of a diagonal Gd 
control them, as shown in Fig. 2a. 
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-
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di 
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ii. A non-diagonal term Ty/r_b, 
 

( ) ( )[ ] ( ) 1
1-1

d
1-

bb
1-1

d
1

y/r_b CΛGΛITGBGΛGΛIT y/r
- −−

+=+−+=   (7) 
 
that presents a non-diagonal structure. It is equivalent to the same n previous systems with internal 
disturbances jij1 rc  at plant input (Fig. 2b). 

 
In Eq. (7), the matrix C1 is the only part that depends on the non-diagonal parts of both the plant inverse B 
and the controller bG . Hence, it comprises the coupling, and from now on C1 will be the coupling matrix 
of the equivalent system for reference tracking problems, 
 

( ) y/rbb TGBGC +−=1         (8) 
 
Each element c1ij of this matrix obeys, 
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where kiδ  is the delta of Kronecker that is defined as, 
 

⎩
⎨
⎧

≠⇔=
=⇔=

=
ik0
ik1

ki

ki
ki δ

δ
δ          (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  i-th equivalent SISO and MISO systems 

2.1.2 Disturbance rejection at plant input 

The transfer matrix from the external disturbance at plant input '
id  to the output y can be written as shown 

in Eq. (11), 
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( ) '
//

1
ididiyidiyi dPTdTdPGPIy ==+= −      (11) 

 
and then, 
 

( ) ( ) ( )( ) ib
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d
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i
1-1

d
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iy/di dTGBΛGΛIdΛGΛIdT /diy++−+=
−−

   (12) 
 
In that expression -Eq. (12)- it is possible to find two different terms: 
 
i. A diagonal term Ty/di_d,  
 

( ) 1-1
d

1-
y/di_d ΛΛ −

+= GIT                  (13) 
 
Again, Eq. (13) is equivalent to n regulator MISO systems, as shown in Fig. 3a. 
 
ii. Non diagonal term Ty/di_b 
 

( ) ( ) ( ) 2
-11

d
-1

b
-11

d
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y/di_b CΛGΛITGBΛGΛIT y/di
−−

+=++=    (14) 
 
that presents a non-diagonal structure which is equivalent to the same n previous systems with external 
disturbances jij2 dic  at plant input, as shown in Fig. 3b. 

 
In Eq. (14), the matrix C2 comprises the coupling, and from now on C2 will be the coupling matrix of the 
equivalent system for external disturbance rejection at plant input problems, 
 

( ) y/dib TGBC +=2          (15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3  i-th equivalent MISO systems 
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Each element c2ij of this matrix obeys, 
 

)1()( ikkjik

n

1k

*
ik2ij δ−+=∑

=

tgpc        (16) 

 
where kiδ  is the delta of Kronecker defined in Equation (10). 
 

2.1.3 Disturbance rejection at plant output 

The transfer matrix from the external disturbance at plant output '
od  to the output y can be written as 

shown in Eq. (17), 
 

( ) '
// ododoyodoyo dPTdTdGPIy ==+= −1      (17) 

 
and then, 
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-

o
-
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d
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d
1 +−+++=

−−
  (18) 

 
In that expression -Eq. (18)- it is possible to find two different terms: 
 
i. A diagonal term Ty/do_d,  
 

( ) 1
d

1
y/do_d

−
+= GΛIT -                  (19) 

 
Once more, Eq. (19) is equivalent to the n regulator MISO systems showed in Fig. 4a, 
 
ii. Non diagonal term Ty/do_b 
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that presents a non-diagonal structure. It is equivalent to the same n previous systems with external 
disturbances c3ij doj at plant input, as shown Fig. 4b. 
 
In Eq. (20), the matrix C3 comprises the coupling, and from now on it will be the coupling matrix of the 
equivalent system for external disturbance rejection at plant output problems, 
 

( ) y/doTGBBC b+−=3         (21) 
 
Each element of the coupling matrix, c3ij obeys, 
 

)1()()1( ikkjik

n

1

*
ikij

*
ij3ij δδ −+−−= ∑

=

tgppc
k

      (22) 

 
where kiδ  is the delta of Kronecker as defined in Equation (10). 
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Fig. 4  i-th equivalent MISO systems 
 

2.2 The Coupling Elements 
In order to design a MIMO controller with a low coupling level, it is necessary to study the influence of 
every non-diagonal element gij on the coupling elements c1ij, c2ij and c3ij, defined in Eq. (9), (16) and (22). 
These elements can be simplified to quantify the coupling effects. Then it will be possible to analyze the 
loop decoupling and to state some conditions and limitations using fully populated matrix controllers. To 
analyze the coupling elements, one Hypothesis is stated. 
 
Hypothesis H1: suppose that in Eq. (9), (16) and (22), 
 

( ) ( ) jjkjik
*
ikjjij

*
ij  tofbandwidth  in the andj,kfor ≠+>>+ ,tgptgp     (23) 

 
Note that the above expression is scale invariant and is typically fulfilled once the MIMO system has been 
ordered according to appropriate methods like the Relative Gain Analysis, etc. Then the diagonal elements 
tjj will be much larger that the non-diagonal ones tkj, 
 

jjkjjj  tofbandwidth  in the andj,kfor,tt ≠>>      (24) 

 
Now, two simplifications are applied to facilitate the quantification of the coupling effects c1ij, c2ij, c3ij.  
 
Simplification S1: Using the Hypothesis H1, Eqs. (9), (16) and (22), which describe the coupling elements 
in the tracking problem, disturbance rejection at plant input and disturbance rejection at plant output 
respectively, are rewritten as shown Table I. 
 
Simplification S2: The elements tjj are computed for each case from the equivalent system derived from 
Eqs. (6), (13) and (19). The results are shown in Table I. 
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Table I. Simplifications to quantify the coupling effects 
 

 Reference tracking External disturbances 
 at plant input 

External disturbances  
at plant output 

Simplification 
S1 

( ) ji;ij
*
ijjjij1ij ≠+−= gptgc  

(25)
( ) ji;ij

*
ijjj2ij ≠+= gptc

(26)
( ) ji;ij

*
ijjj

*
ij3ij ≠+−= gptpc

(27)

Simplification 
S2 1*

jjjj

1*
jjjj

jj
1

−

−

+
=

pg

pg
t      (28) 1*

jjjj

1*
jj

jj
1

−

−

+
=

pg

p
t    (29) 1*

jjjj
jj

1

1
−

+
=

pg
t       (30)

 
Due to Simplifications S1 and S2, the coupling effects c1ij, c2ij, c3ij can be computed as, 
 
Tracking  
 

( )
( ) ji;

jj
*
jj

ij
*
ijjj

ij1ij ≠
+

+
−=

gp
gpg

gc                     (31) 

 
Disturbance rejection at plant input  
 

( )
( ) ji;

jj
*
jj

ij
*
ij

2ij ≠
+

+
=

gp
gp

c                      (32) 

 
Disturbance rejection at plant output 
 

( )
( ) ji;

jj
*
jj

ij
*
ij

*
jj*

ij3ij ≠
+

+
−=

gp
gpp

pc                   (33) 

 

2.3 The Optimum Non-diagonal Controller 
Consider non-diagonal controllers to reduce the coupling effect and diagonal controllers that help to 
achieve the loop performance specifications. The optimum non-diagonal controllers for the three cases 
(tracking and disturbance rejection at plant input and output) can be obtained making the loop interaction 
of Eqs. (31), (32) and (33) equal to zero. 

 
Note that both elements, *

ijp  and *
jjp , of these equations are uncertain elements of P*. Every uncertain 

plant *
ijp  can be any plant represented by the family, 

 

{ } ( ) n1,...,ji,for∆∆0∆1 ijijij
N

ijij =≤≤+= ,p,pp ***     (34) 

 

where 
N

ij
*p  is the nominal plant, and *

ijp∆  the maximum of the non-parametric uncertainty radii ij∆ . 

 

The nominal plants 
N

ij
*p  and 

N
jj
*p  that will be chosen for the optimum non-diagonal controller will 
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follow the next rules: 
 
a) If the uncertain parameters of the plants show a uniform Probability Distribution (Fig. 5a) –which is 

typical in the QFT methodology-, then the elements *pij  and *p jj  for the optimum non-diagonal 

controller will be the nominal plants 
N

ij
*p  and 

N
jj
*p , which minimise the maximum of the non-

parametric uncertainty radii *
ijp∆  and *

jjp∆  that comprise the plant templates (Fig. 5b). 
 
b) If the uncertain parameters of the plants show a non-uniform Probability Distribution (Fig. 5c), then 

the elements *pij  and *p jj  for the optimum non-diagonal controller will be the nominal plants 
N

ij
*p  

and 
N

jj
*p , whose set of parameters maximize the area of the Probability Distribution in the regions 

[ εε +− ijij , aa ] and [ εε +− jjjj , aa ] (∀ parameter aij, bij, …, ajj, bjj …) respectively.  
Now, making Eqs. (31), (32) and (33) equal to zero and using Eq. (34), the optimum non-diagonal 
controller for each case is obtained. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Probability Distribution of the parameter aij, and Non-parametric uncertainty radii *
ijp∆  that comprise 

the plant templates  

Uniform 
PD 
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2.3.1 Tracking 

jifor
jj

ij
jj

opt
ij ≠

⎟
⎟
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⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ,

p

p
gFg N*

N*

pd                     (35) 

2.3.2 Disturbance rejection at plant input 

jifor
N*

ij
opt
ij ≠⎟

⎠
⎞

⎜
⎝
⎛−= ,pFg pd        (36) 

 

2.3.3 Disturbance rejection at plant output 

jiforN*
jj

N*
ij

jj
opt
ij ≠

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ,

p

p
gFg pd        (37) 

 
where the function Fpd(A) means in every case a casual and stable proper function made from the 
dominant poles and zeros of the expression A. 
 

2.4 The Coupling Effects 
The minimum achievable coupling effects -Eqs. (38), (40), (42)- can be computed substituting the 
optimum controller of Eqs. (35), (36) and (37) in the coupling expressions of Eqs. (31), (32) and (33) 
respectively, and taking into account the uncertainty radii of Eq. (34). Analogously, the maximum 
coupling effect without any non-diagonal controller -pure diagonal controller cases- can be computed 
substituting gij=0 in the Eqs. (31), (32) and (33) respectively -Eqs. (39), (41), (43)-. That is to say, 
 

2.4.1 Tracking 

( ) jjijjjijgg1ij ∆∆opt
ijij

gψc −=
=

        (38) 

( ) jjijij0g1ij ∆1
ij

gψc +=
=

        (39) 

 

2.4.2 Disturbance rejection at plant input 

ijijgg2ij ∆opt
ijij

ψc =
=

         (40) 

( )ijij0g2ij ∆1
ij

+=
=

ψc          (41) 

 

2.4.3 Disturbance rejection at plant output 

( ) jjjjijijgg3ij ∆∆opt
ijij

gψc −=
=

        (42) 

( ) jjijij0g3ij ∆1
ij

gψc +=
=

        (43) 
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where, 

( ) jj
N*

jjjj

*N
ij

ij ∆1 gp
p

ψ
++

=         (44) 

 
and the uncertainty is: n1,...,ji,for∆∆0∆∆0 jjjjijij =≤≤≤≤ ,p,p **  

 
The coupling effects, calculated in the pure diagonal controller cases, result in three expressions (39), (41) 
and (43) that still present a non-zero value when the nominal-actual plant mismatching due to the 
uncertainty disappears: 0∆and0∆ jjij == . However, the coupling effects obtained with the optimum non-
diagonal controllers -Eqs. (38), (40) and (42)- tends to zero when that mismatching disappears. 
 

2.5 Design Methodology 
The proposed controller design methodology is a sequential procedure closing loops with four steps [2-7]: 
 
Step A: Controller structure, input-output pairing and loop ordering.   First, the methodology identifies 
the controller structure (minimum required elements of the controller matrix) and the input-output pairings 
by using the frequency-dependent Relative Gain Array –RGA- [10-11]. Then, the matrix P*(s) is 
reorganized so that [p11

*(s)]−1 has the smallest phase margin frequency, [p22
*(s)]−1 the next smallest phase 

margin frequency, and so on to guarantee the existence of a solution [1]. 
 
After that, the sequential design technique composed of n stages, as many as loops, performs the following 
two steps B and C for every column of the matrix compensator G(s) from k = 1 to n (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6  Steps for controllers design 

 
Step B: Design of the diagonal compensator gkk(s).   The diagonal element gkk(s) is calculated through 
standard QFT loop-shaping [1] for the inverse of the equivalent plant [pkk

*e (s)]k
−1 in order to achieve 

robust stability and robust performance specifications [13-14]. The equivalent plant satisfies the recursive 
relationship (45) [13], which is an extension for the non-diagonal case of the recursive expression 
proposed by Horowitz [12] as the Improved design technique, also called Second method by Houpis et al. 
[1]. 
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If the control system requires tracking specifications as )(ω)(j)( ii
y/r
iiii ω≤≤ω bta then, because 

ii1crii
y/r
ii ttt += -Eq.(5)-, the tracking bounds bii and aii will have to be corrected with the coupling 

specification τc1ii, so that: 
 

bii
c = bii - τc1ii       ,     aii

c = aii + τc1ii       (46) 
c1ii1iiiic1ii τ≤= cwt          (47) 

)(ω)(j)( c
iirii

c
ii ω≤≤ω bta         (48) 

 
These are the same corrections proposed originally by Horowitz (see also [1]). However, with the 
proposed non-diagonal method these corrections will be less demanding. The coupling expression tc1ii = wii 
c1ii is now minor than in the previous diagonal methods –compare Eqs. (38) and (39)-. The off-diagonal 
elements gij (i≠j) of the matrix controller will attenuate or cancel that cross coupling. Then the diagonal 
elements gkk of the non-diagonal method will need less bandwidth than the diagonal elements of the 
previous diagonal methods. 
 
Step C: Design of the (n-1) non-diagonal elements gik(s) (i ≠ k, i = 1,2,...n).   The gik(s) (i ≠ k) elements of 
the k-th compensator column are designed to minimize the non-diagonal elements of the cross-coupling 
matrices according to different purposes: reference tracking (31), (35); disturbance rejection at plant input 
(32), (36); and disturbance rejection at plant output (33), (37). The resulting compensators gik(s) have to be 
casual and stable, and include the dominant dynamics. 
 
The off-diagonal controller elements can be allocated not only to reduce the coupling effects of the MIMO 
system, but also to reach complementary objectives, such as to remove RHP (right-half plane) 
transmission zeros introduced during the controller design [5], improve system integrity [13] and stability 
margins, reduce controller efforts, etc.  
 
Step D: Design of the prefilter.   The design of the prefilter F(s) does not present any additional difficulty 
because the final transfer function that relates R(s) to Y(s) shows less loop interaction thanks to the fully 
populated compensator design. Therefore, the prefilter F(s) can generally be a diagonal matrix. 
 

2.6 Stability Conditions 
Closed-loop stability of a MIMO system with a non-diagonal controller designed by using a sequential 
procedure is guaranteed by the following sufficient conditions [14]: 
 
(c.1) each Li(s) = gii(s) [pii

*e(s)]i
−1, i=1, ..., n, satisfies the Nyquist encirclement condition, 

(c.2) no RHP pole-zero cancellations occur between gii(s) and [pii
*e(s)]i

−1, i=1,...,n, 

(c.3) no Smith-McMillan pole-zero cancellations occur between P(s) and G(s), and 

(c.4) no Smith-McMillan pole-zero cancellations occur in ⏐P*(s) + G(s)⏐. 

2.7 Remarks 
It is important to note that the calculation of the equivalent plant [pkk

*e(s)]k
−1, (45), usually introduces some 

exact pole-zero cancellations. That operation could be precisely performed by using symbolic 
mathematical tools [1]. However, fictitious poles and zeros may be introduced when using numerical 
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calculus due to the typical rounding errors of the computer. Additionally, it is needed to determine the 
inverse of the plant matrix, which can also be numerically non-reliable. 
 
In this paper, these problems are overcome through a new frequency response computation method. That 
is, for each frequency of interest ω and for every set of parameters within the region of uncertainty, each 
element pij(jω) of the plant transfer function matrix is translated into a complex matrix Pfreq_ij that 
represents the frequency response of every plant element within the uncertainty. Thus, this complex matrix 
has as many rows as different cases generated due to the uncertainty and as many columns as frequencies 
(49). All the abovementioned calculations are then performed on the basis of this set of complex matrices 
by using element-by-element matrix operations. As a result, potential impediments related to practical 
computation are avoided. 
 
 
 
 

                                                            (49) 
 
 

 
 
 
 

 

At the same time, arbitrarily picking the wrong order of the loops to be designed can result in the non-
existence of a solution. This may occur if the solution process is based on satisfying an upper limit of the 
phase margin frequency ωφ, for each loop. Hence, Loop i having the smallest phase margin frequency will 
have to be chosen as the first loop to be designed. The loop that has the next smallest phase margin 
frequency will be next, and so on [1]. 
 
Although very remote, theoretically there exists the possibility of introducing RHP transmission zeros due 
to the compensator design. This undesirable situation can not be detected until the multivariable system 
design is completed. To avoid it the proposed methodology (Steps A, B and C) is inserted in a procedure 
introduced by Garcia-Sanz and Eguinoa [5]. Once the matrix compensator G(s) is designed, the 
transmission zeros of P(s) G(s) are determined using the Smith-McMillan form and over the set of 
possible plants ℑP due to uncertainty. If there exist new RHP transmission zeros apart from those initially 
present in P(s), they can be removed by using the non-diagonal elements placed in the last column of the 
matrix G(s). 
 

3.0 MIMO QFT CONTROL FOR A SPACECRAFT WITH LARGE FLEXIBLE 
APPENDAGES [7] 

This section summarizes the design of a robust non-diagonal MIMO QFT controller to govern the position 
and attitude of a Darwin-type spacecraft with large flexible appendages. The satellite is one of the flyers of 
a multiple spacecraft constellation for a future ESA mission. It presents a 6x6 high order MIMO model 
with large uncertainty and loop interactions introduced by the flexible modes of the low-stiffness 
appendages. The scientific objectives of the satellite require very demanding control specifications for 
position and attitude accuracy, high disturbance rejection, loop-coupling attenuation and low order 
controller. This section demonstrates the feasibility of sequential non-diagonal MIMO QFT strategies 

)(Imag)(Re

Case

Case

2Case
1Case

sfrequencie

1

21

11211

_ij

21

krkrkr

mnm

n

freq

nr

ajaa

aa

a
aaa

m

k

+=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⇒

P

ωωωω

Template at ωr  

Plant k 



Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems  

 RTO-EN-SCI-195 1 - 14 

controlling the Darwin spacecraft and compares the results with a previous H-infinity design. 

3.1 Description 
The Darwin mission consists of three to six telescopes arranged in a symmetric configuration flying in 
formation around a master satellite or central hub (Fig. 7). Darwin will employ nulling interferometry to 
detect and analyze through appropriate spectroscopy techniques the atmosphere of remote planets close to 
a bright star. The infrared light collected by the free flying telescopes will be recombined inside the hub-
satellite in such a way that the light from the central star suffers destructive interference and is cancelled 
out, allowing this way the much fainter planet easier to stand out. The interferometry requires very 
accurate and stable positioning of the spacecraft in the constellation, which puts high demands on the 
attitude and position control system. Darwin will be placed further away, at a distance of 1.5 million 
kilometers from Earth, in the opposite direction from the Sun (Earth-Sun Lagrangian Point L2 –Fig.8). 
 

          
 

Fig. 7  Darwin spacecraft (Artist's view. ESA courtesy) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8  Earth-Sun Lagrangian Points and Darwin spacecraft location 

 
Each telescope flyer is cylindrically shaped (2 m diameter, 2 m height) and weighs 500 kg. In order to 
protect the instrument from the sunlight, it is equipped with a sunshield modeled with 6 large flexible 

DARWINDARWIN

Sun
Earth

θ
.
θ
.

L1
L2

L3

L4

L5

Lagrange
points

L1
L2

L3

L4

L5

L1
L2

L3

L4

L5

Lagrange
points

Sun-Earth Distance = 1 AU = 150,000,000 km



Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems 

 RTO-EN-SCI-195 1 - 15 

beams (4 m long and 7 kg) attached to the rigid structure (Fig. 9; beam end-point coordinates in brackets). 
The main mechanical characteristics of the Darwin-type Flyer are summarized in Table II. 
 
For every beam (Fig. 9), two different frequencies for the first modes along Y and Z beam axes are 
considered. Their frequency can vary from 0.05 Hz to 0.5 Hz, with a nominal value of 0.1 Hz, and their 
damping can vary from 0.1% to 1%, with a nominal value of 0.5%. As regards spacecraft mass and inertia, 
the corresponding uncertainty around their nominal value is of 5%. 
 
Based on the previous description and using a mechanical modeling formulation for multiple flexible 
appendages of a rigid body spacecraft, the open-loop transfer function matrix representation of the 
Darwin-type Flyer is given in (50) and Fig. 10: 
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where x, y, z are the position coordinates; ϕ, θ, ψ are the corresponding attitude angles; Fx, Fy, Fz are the 
force inputs; Tϕ, Tθ, Tψ are the torque inputs; and where every pij(s), i, j = 1,…,6, is a 50th order Laplace 
transfer function with uncertainty. 
 
 

 

 
Fig. 9  Darwin type 6 DOF satellite model 

 

The Bode diagram of the plant (Fig. 10) shows the dynamics of the 36 matrix elements. Each of them and 
the MIMO system (matrix) are minimum phase. The flexible modes introduced by the appendages 
(second-order dipoles) affect all the elements around the frequencies ω = [0.19, 10] rad/sec. The diagonal 
elements pii(s), i = 1,…,6, and the elements p15(s), p51(s), p24(s) and p42(s) are mainly double integrators 
plus the flexible modes. 
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Table II. Mechanical characteristics of the Darwin-type Flyer model 

Parameter Value 
Satellite body mass 500 kg 
Cylinder dimensions 2 m diameter, 2 m height 

Inertia tensor of satellite in control frame at satellite 
Centre of Mass 
(without reflector) 

[ ] 2
ContCoMyDarwin_bod mkg

25000
02500
00250

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=I  

Inertia tensor of satellite in control frame at satellite 
Centre of Mass 
(with reflector) 

[ ] 2
ContCoMyDarwin_bod mkg

68400
05090
00509

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=I

Position of Centre of Mass in control frame at satellite 
Centre of Mass [0, 0, 0] m 

Sunshield mass 7 kg * 6 beams = 42 kg 
Beam length 4 m 
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Fig. 10  Darwin-type flyer dynamics 
 
The block diagram of the control system is shown in Fig. 11. The sensor module represents both the OPD 
(Optical Pathlength Differences) Fringe Tracker sensor and the FPM (Fine Pointing Metrology) sensor, 
which measure the satellite position and attitude, respectively. The actuators, FEEP (Field Emission 
Electric Propulsion) thrusters, are a type of electrostatic propulsion that provides very small and precise 
actuation (Table III). 
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Fig. 11  General 6x6 satellite control loop 
 
The external disturbances acting on the satellite (gravity gradient and solar pressure), although very small, 
are also modeled as forces and torques along the 3 axes. The gravity gradient is modeled as a constant bias 
and the solar pressure is represented as a white noise perturbation (Table III). 
 
 

Table III. Characteristics of sensors, actuators and external disturbances  

Name Characteristics Values 

Fine Pointing 
Metrology (FPM) 

For very precise relative attitude 
measurements 

θmeas = θtrue + WNFPM 

WNFPM = Attitude white noise. 

PSD of 10.66 mas/ Hz  along the 3 axes 
Attitude range:[-40; 40] arcsec 
Sampling frequency: 1Hz 

Optical Pathlength 
Differences (OPD) 
Fringe Tracker 

For precise 3-axis measure of position 
Xmeas = Xtrue + WNOPD 

WNOPD = Position white noise. 

PSD of 2 nm/ Hz  along the 3 axes 
Attitude range:[-1; 1] µm 
Sampling frequency: 1Hz 

FEEPS actuators 

For very small and precise actuation 
 
FFEEP = Fcommanded + WNFEEP 
TFEEP = Tcommanded + WNT_FEEP 

Force model: WNFEEP = Force white noise. 

PSD of 0.1 µN / Hz  along the 3 axes, which can eventually 

vary up to 0.5 µN / Hz . 
Force range:[-150; 150] µN 
Torque model: WNT_FEEP = Torque white noise. PSD of 0.1 

µNm / Hz  along the 3 axes, which can eventually vary up 

to 0.5 µNm / Hz . 
Torque range:[-150; 150] µNm 
Sampling frequency: 1Hz 

Solar Pressure FSun = BF_Sun + WNF_Sun 
TSun = BT_Sun + WNT_Sun 

Force model: WNF_Sun = Force white noise. 

PSD of 0.05 µN / Hz  along the 3 axes 
BF_Sun = 10 µN 
Torque model: WNT_Sun = Torque white noise. PSD of 0.1 µNm 

/ Hz  along the 3 axes 
BT_Sun = 10 µNm 

Gravity Gradient FGrav 

TGrav 
Force model: FGrav = 0.03 µN along the 3 axes 
Torque model: TGrav = 0.03 µNm along the 3 axes 

         θ = attitude. X = position. F = Force. T = Torque 
 
 
The original dynamics benchmark simulator, provided by ESA  and implemented under Matlab/Simulink, 
integrates all those elements constituting the whole satellite control system: sensors, actuators, dynamics, 
disturbances, etc. (Fig. 11). For each performance evaluation campaign, 300 random dynamics within the 
uncertainty (Monte-Carlo analysis) are generated to evaluate the performance of the controllers. 
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Table IV. Darwin-type Flyer requirements 

 Objective Numerical Requirement 
Maximum absolute value:  

1 µm for all axes  Position accuracy 
Standard deviation:  
0.33 µm for all axes  

Maximum absolute value:  
25.5 mas for all axes (3 σ) 

Astronomical Requirements 

Pointing accuracy 
Standard deviation:  

8.5 mas for all axes (1 σ) 
Bandwidth ∼ 0.01 Hz for all axes 

Saturation limits Maximum force: 150 µN 
Maximum torque: 150 µNm  Engineering Requirements 

Rejection of high frequency noises 
(from measurement and actuation) High roll-off after the bandwidth 

Stability margins 
( )

( ) 2

2

<

<

ω

ω

ω

ω

jmax

jmax

S

T
 

Loop interaction Minimum 
Rejection of flexible modes  Maximum 

Control Requirements 

Controller complexity and order Minimum 
 

3.2 Control objectives 
The main objective of the spacecraft is to fulfill some astronomical requirements that demand to keep the 
flying telescope pointing at both the observed space target and the central hub-satellite. This set of 
specifications leads to some additional engineering requirements (bandwidth, saturation limits, noise 
rejection, etc.) and also needs some complementary control requirements (stability, low loop interaction, 
low controller complexity and order, etc.) –Table IV-. 
 

3.3 Non-diagonal MIMO QFT Controller Design 
The sequential non-diagonal MIMO QFT methodology previously described in Section 2 [2-7] is applied 
here to control the position and attitude of the Darwin-type Flyer. 
 

3.3.1 Relative Gain Array Interaction Analysis –Step A- 

The Relative Gain Array (RGA) of a non-singular square matrix P is a scale-invariant measure of 
interactions. Its original definition introduced by Bristol [11] was only proposed for steady state (ω = 0 
rad/sec). However, the RGA can also be computed frequency-by-frequency (51) and used to assess the 
interaction at frequencies other than zero [10]. In most cases, the value of RGA at frequencies close to 
crossover is the most important one. 
 

( ) ( )[ ] ( ) ( )( )T
RGA

 1
ij jjjj ωωωλω −⊗== PP     (51) 

 
where ⊗ denotes element-by-element multiplication (Schur product). Further information on how to 
interpret the RGA results and select pairings can be found at [10, 11]. 
 
The 6x6 (position and attitude) dynamic model of the Darwin-type spacecraft with large flimsy 
appendages has been analyzed by using the RGA method as a function of frequency and for the whole set 
of parameter uncertainty. Although the matrix obtained by means of (51) is a complex one, only the 
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absolute values are presented. By examining the corresponding matrices at each frequency, it is observed 
that the steady state results extend through low frequency up to 0.19 rad/sec. As a representative example 
within this range, (52) shows the results for the most coupled plant within the uncertainty at ω = 6.28⋅10-4 
rad/sec. According to it, the pairing should be done through the main diagonal of the matrix, which 
contains positive RGA elements, and the elements g15(s), g24(s), g42(s), g51(s) should also be considered 
relevant. 
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If the analysis is performed at high frequency, it produces the same concluding results in the entire 
spectrum starting at 3.51 rad/sec. 
 
So far, the retained compensator elements would be those of the RGA matrix marked in bold in (52). 
Nevertheless, as aforementioned, the RGA elements increase and more interactions are founded in the 
interval of frequencies where the flexible modes of the satellite mostly affect (i.e. ω = [0.19-3.51] rad/sec), 
as can be seen in (53) and (54) for the most coupled plants at ω = 0.8 rad/sec and 1 rad/sec, respectively. 
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3.3.2 Controller Structure 

In accordance with the above RGA results and taking into account the requirement of minimum controller 
complexity and order (Table IV), a first compensator structure consisting of six diagonal elements and 
four off-diagonal elements is chosen as the most suitable one (55). 
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From this, four independent compensator design problems have been adopted, two SISO and two 2x2 
MIMO problems: [g33(s)] and [g66(s)]; [g11(s)  g15(s) ; g51(s)  g55(s)] and [g22(s)  g24(s) ; g42(s)  g44(s)], 
respectively. The SISO problems will be considered from the classical SISO QFT point of view, while the 
two 2x2 MIMO subsystems will be studied through the non-diagonal MIMO QFT methodology. The 
coupling detected in the range of frequencies of the flexible modes will be considered in the course of the 
design procedure through more demanding specifications with respect to disturbance rejection. Provided 
the performance results were not satisfactory, then the compensator structure should be filled up with 
additional off-diagonal compensators consistent with (53) and (54): g34, g35, g43, g45, g53 and g54 elements. 
 

3.3.3 Robust Closed-Loop Specifications 

The applied non-diagonal and diagonal MIMO QFT techniques design each loop individually, including 
the multivariable characteristic by means of their corresponding equivalent plant. So, the robust closed-
loop specifications are defined in terms of SISO expressions for both SISO and MIMO subsystems.  
 
Since these methodologies are frequency domain techniques, there is obviously a need for translating time 
domain requirements (Table IV) into the frequency domain. The original specifications in Table IV 
impose maximum and standard deviation values on the position and attitude time error signals, as well as 
actuator forces and torques. Their translation into the frequency domain is based on control-ratio models 
[9], and takes into account the expected external disturbances on the Darwin-type flyer, the spacecraft 
flexible modes and the coupling among loops. As a result, four Type of specifications are defined to 
calculate the QFT bounds: Type 1: Robust stability; Type 2: Robust sensitivity; Type 3: Robust 
disturbance rejection at plant input; and Type 4: Robust control effort attenuation. 
 
The notation used for the signals in the following description of specifications refers to the scheme of the 
generic MIMO subsystem presented in Fig. 12. The compensators have been designed within the set of 
frequencies of interest ω = [6.28⋅10-4, 62.8] rad/sec. 

 

Fig. 12  Structure of a 2 Degree of Freedom MIMO System 
 
Type 1: Robust Stability specification 

This specification, shown in (56), is stated to guarantee a robust stable control. All the required values, 
displayed loop by loop in (57) and (58), imply at least 1.54 (3.75 dB) gain margin and at least 49.25º 
phase margin. The specification corresponds not only to the closed-loop transfer function yi(s)/ri(s), but 
also to transfer functions yi(s)/ni(s) and ui(s)/vi(s). Hence this condition additionally imposes the 
requirements on sensor noise attenuation, disturbance rejection at plant input and flexible modes. 
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where [pii

*e(s)]i
-1 is the inverse of the equivalent plant (45), which corresponds to pii(s) in SISO designs. 

 



Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems 

 RTO-EN-SCI-195 1 - 21 

Loops 1, 2 and 3:  δ1(ω) = 1.85    ;  ∀ω    (57) 
 

Loops 4, 5 and 6:  
0.0912s0.4s

0.1687
21

++
=)(ωδ     ;  ∀ω           (58) 

 
Type 2: Sensitivity reduction 

The main objective of this specification, (59) and (60), is sensor noise attenuation and reduction of the 
effect of the parameter uncertainty on the closed-loop transfer function. It corresponds to ei(s)/ni(s) and 
[dtii(s)/tii(s)] / [dpii(s)/pii(s)] transfer functions. 
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      (59) 

 
All loops: δ2(ω) = 2    ;   ∀ω    (60) 

 
Type 3: Rejection of disturbances at plant input 

Solar pressure perturbation and gravity gradient are considered to affect at plant input in the form of both 
force and torque. The purpose of this specification (61), which corresponds to ei(s)/vi(s) and yi(s)/vi(s) 
transfer functions, is to attenuate the effect of plant input disturbances on the control error and the output 
signal. Thus, a high gain is required in the low frequency band, (62) to (64). Besides, since vi(s) also 
represents the flexible modes, special attention is paid to their frequency range mainly to accomplish the 
attitude requirements. 
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Loops 1 and 2: ( ) ( )
( ) ( ) ( )0912040s6.18s0.307s

0.385s215530
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.

++++

+
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Loop 3:   ( ) ( ) ( )
( ) ( )0.0004754s0.025540.01813-s

105.104s0.0099740.01705-s0.313
2
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Loops 4, 5 and 6:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0.0981s0.23520.00326s0.079040.445s0.007333s

0.02736s0.060140.0038920.20440.186s0.2s
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=

ss

sssωδ     ;   ∀ω (64) 

 
Type 4: Control signal 

Because of saturation limits, control signal movements should be kept reasonably small despite 
disturbances coming from actuators and sensors. This specification, (65), corresponds to ui(s)/ni(s) transfer 
function and is depicted in (66)-(68). 
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Loops 1 and 2: 
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( )56s233
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Loop 3:   
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Loops 4, 5 and 6:     
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Reducing coupling effects as much as possible 

The coupling effects from other axes can be considered as part of the disturbances acting at the input of 
the equivalent SISO plant. The way of designing the non-diagonal elements of the matrix compensator 
deals with the aim of minimizing the off-diagonal elements of the coupling matrix (32). 
 

3.3.4 SISO Design Problems: g33(s), g66(s) 

Compensators g33(s) and g66(s) are independently designed by using classical SISO QFT [1] to satisfy the 
robust stability and robust performance specifications stated in Section 3.3.3 for every plant within the set 
of uncertain plants. The corresponding QFT bounds and the nominal case of the designed open-loop 
transfer functions Lii(s) = pii(s) gii(s), i = 3, 6, are plotted on the Nichols Chart for some of the most 
relevant frequencies in Fig. 13(a) and 13(b) for loops 3 and 6 respectively. Both designs satisfy not only 
their respective bounds but also the Nyquist encirclement condition, and no RHP pole-zero cancellations 
occur between g33(s) and p33(s), nor between g66(s) and p66(s). The Bode plot of each compensator can be 
found in Section 3.6, where g33(s) [Fig. 18(a)] and g66(s) [Fig. 18(b)] are represented in solid line in 
comparison with the H-infinity design (dashed line) introduced in Section 3.5. The QFT compensator 
expressions are presented in Section 3.5. 
 

 
                                             (a)                                                                                   (b) 

 
Fig. 13  Loop-shaping (a) L33(s) = p33(s) g33(s). (b) L66(s) = p66(s) g66(s) 
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3.3.4.1 First MIMO Problem: g11(s), g51(s), g55(s), g15(s) Design 

The compensator for this 2x2 MIMO problem has been designed by applying the non-diagonal MIMO 
QFT methodology developed by Garcia-Sanz et al. [1-7] and outlined in Section 2. In this particular case, 
the plant to be controlled is composed of the following elements coming from the original 6x6 Darwin-
type spacecraft model P15(s) = [p11(s)  p15(s) ; p51(s)  p55(s)], whose inverse matrix is P15*(s) = [P15(s)] -1 = 
[p11

*(s)  p15
*(s) ; p51

*(s)  p55
*(s)]. 

 
Step A: Arrangement of the system 

First, the methodology adopts the structure and the pairing of inputs and outputs given by the RGA 
technique in (55) and arranges the plant inverse matrix P15*(s) so that the inverse of the first diagonal 
element in this matrix has the smallest phase margin frequency [1]. In some cases, arbitrarily picking the 
wrong order of the loops could lead to the non-existence of a solution. In the present problem, the 
bandwidth of the loops is quite similar. Then, any order can be selected to design the non-diagonal MIMO 
QFT compensators.  
 
Step B1: Design of the diagonal compensator g11(s) 

The diagonal compensator g11(s) is designed through standard QFT loop-shaping [1] for the inverse of the 
equivalent plant [p11

*e(s)]1 = p11
*(s) to fulfill the robust stability and robust performance specifications 

determined in Section 3.3.3 for every plant within the set of uncertain plants. Fig. 14(a) shows the nominal 
case of the designed open-loop transfer function L11(s) = [p11

*e(s)]1
−1 g11(s) in bold solid line, which 

satisfies the QFT bounds, also represented in the figure. Additionally, the design fulfils the first two 
sufficient stability conditions (c.1) and (c.2) (Section 2.6). That is, L11(s) = [p11

*e(s)]1
−1 g11(s) satisfies the 

Nyquist encirclement condition and no RHP pole-zero cancellations occur between g11(s) and [p11
*e(s)]1

−1. 
The Bode plot for the obtained compensator g11(s) is presented in Fig. 19(a) (solid line) together with the 
design of the H-infinity approach. 
 

 
                                          (a)                                                                                    (b) 

 
Fig. 14  Loop-shaping (a) L11(s) = [p11

*e(s)]1
−1 g11(s). (b) L55(s) = [p55

*e(s)]2
−1 g55(s) 

 
Step C1: Design of the non-diagonal compensator g51(s) 

The non-diagonal compensator g51(s) is designed to minimize the (5,1) element of the coupling matrix in 
the case of disturbance rejection at plant input (32), which gives the following expression: 
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( ) ( )spsg *opt N
5151 −=      (69) 

 
where N denotes the plant that minimizes the maximum of the non-parametric uncertainty radii 
comprising the plant templates on the Nichols Chart. Due to the uncertainty, the expression [-p51

*(s)] 
determines a region in the magnitude and phase plots, where the compensator g51(s) is shaped following 
the mean value at every frequency ω ∈ [0, 0.1] rad/sec [see Fig. 15 with g51(s) interpolating the plot]. The 
compensator Bode plot is compared in Fig. 19(c) with that of the (5,1) element of the H-infinity 
compensator introduced in Section 3.5. 
 

 
 

Fig. 15  Magnitude plot of [-p51
*(s)] with uncertainty and g51(s) –bold solid line- 

 
Step B2: Design of the diagonal compensator g55(s) 

As in step B1, the diagonal compensator g55(s) is designed to control the inverse of the equivalent plant, 
[p55

*e(s)]2
−1, which takes the compensator previously designed into account (45). 
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On the basis of the robust specifications defined in Section 3.3.3 for [p55

*e(s)]2
−1, and also taking into 

account the plant uncertainty, the QFT bounds are computed. Then, the compensator is designed by 
classical loop-shaping on the Nichols Chart, as is shown in Fig. 14(b). Not only does the design fulfil the 
bounds but also the first two stability conditions of (c.1) and (c.2) from Section 2.6. In other words, L55(s) 
= [p55

*e(s)]2
−1 g55(s) satisfies the Nyquist encirclement condition and no RHP pole-zero cancellations occur 

between g55(s) and [p55
*e(s)]2

−1. The Bode plot of g55(s) is presented in Fig. 19(d). 
 
Step C2: Design of the non-diagonal compensator g15(s) 

Due to the requirement of minimum controller complexity and order (Table IV), the non-diagonal 
compensator g15(s) has been set to zero. Anyway, the equivalent expression to the one used in (69), 
g15

opt(s) = -p15
*N(s), could be applied to cancel interaction in both directions in the MIMO subsystem. 

 
At this point, once the whole controller of the MIMO subsystem has been determined, the last two 
stability conditions mentioned in Section 2.6, (c.3) and (c.4), are checked. The system is stable. Finally, 
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the non-existence of RHP transmission zeros of P(s) G(s) is checked by using the Smith-McMillan form 
over the set of possible plants ℑP due to uncertainty [5]. The non-diagonal MIMO QFT compensator 
expressions are presented in Section 3.6. 
 

3.3.4.2 Second MIMO Problem: g22(s), g42(s), g44(s), g24(s) Design 

The second MIMO problem consists of the following elements: P24(s) = [p22(s)  p24(s) ; p42(s)  p44(s)]. 
From the 2x2 plant inverse matrix P24*(s) = [P24(s)]-1 = [p22

*(s)  p24
*(s) ; p42

*(s)  p44
*(s)] and taking into 

account the robust stability and robust performance specifications (Section 3.3.3), the non-diagonal MIMO 
QFT methodology is equivalently performed by following the steps detailed in Section 2. 
 
The loop-shaping for the diagonal compensator elements g22(s) and g44(s) are shown in Fig. 16(a) and 
16(b), respectively. The Bode plots for the four compensators are shown in Fig. 20(a), (b), (c) and (d) for 
g22(s), g24(s), g42(s), g44(s), respectively. The 2x2 MIMO subsystem is found to be stable according to the 
sufficient stability conditions (Section 2.6). Finally, it is also checked that no additional RHP zeros have 
been introduced by the compensator [5]. The non-diagonal MIMO QFT compensator expressions are 
presented in Section 3.6. 
 

 
                                           (a)                                                                                  (b) 

 
Fig. 16  Loop-shaping (a) L22(s) = [p22

*e(s)]1
−1 g22(s). (b) L44(s) = [p44

*e(s)]2
−1 g44(s) 

 

3.4 Diagonal MIMO QFT Controller Design 
For the sake of comparison, the sequential diagonal MIMO QFT methodology developed by Horowitz 
[12] is also applied to control the position and attitude of the Darwin-type Flyer. Based on the same robust 
closed-loop specifications defined in Section 3.3.3, this technique uses a sequential procedure similar to 
the one detailed in Section 2.5 (Step B), where the recursive expression of the equivalent plant is a 
simplified case of (45), with gij (s) = 0 (i ≠ j). 
 
For the Darwin-type Flyer, the loop-shaping step of the diagonal method requires the same diagonal 
compensators gii (s) as the non-diagonal one. This happens because, in this case, in the middle and high 
frequency range the off-diagonal elements gij(s) (i ≠ j) of the non-diagonal controller have less relative 
influence than the corresponding pij

*(s) elements in the equivalent plant (45). Differences between both 
MIMO QFT controllers arise in the low frequency range, as can be observed in Fig. 17. The C2(5,1) 
element of the coupling matrix for disturbances at plant input (32) is plotted for a representative plant case 
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and for the three controllers: non-diagonal and diagonal MIMO QFT and H-infinity designs. For the 
frequency range ω ∈ [0, 0.1] rad/sec it is shown that C2(5,1)non-diag QFT < C2(5,1)diag QFT < C2(5,1)H-infinity, 
which explains why the non-diagonal MIMO QFT improves the diagonal MIMO QFT and the H-infinity 
controller results under low frequency external disturbances (see Section 3.6.2). 
 

 
 

Fig. 17  Element (5,1) of the coupling matrix C2: non-diagonal MIMO QFT in solid line, diagonal MIMO QFT in 
dotted line, H-infinity in dashed line 

 

3.5 Controllers 
The notation adopted for transfer function expressions denotes the steady state gain as a constant without 
parenthesis; simple poles and zeros as (ω), which corresponds to (s/ω + 1) denominator and numerator, 
respectively; poles and zeros at the origin as (0); conjugate poles and zeros as [ξ ; ωn], with ((s/ωn)2 + 
(2ξ/ωn) s + 1) denominator and numerator, each; n-multiplicity of poles and zeros as an exponent ( )n. 
 
The non-diagonal MIMO QFT compensator consists of the following eight elements: g11(s) = g22(s) = 
{31.5 (0.6194) (0.2138) (0.1663) (0.1649)} / {(0.666) (0.4982) (0.07526) [0.676; 1.479]}  ;  g51(s)  =  -
g42(s) = {42.4 (0)2 } / {(0.3)3}; g15(s)  =  g24(s) = 0; g33(s) = {125 (0.13) (0.057) [0.07019; 0.3565] [1; 
0.02]} / {(1.48) (0.7875) (0.2) (0.004) (0.00246) [0.18; 0.314]}; g44(s) = {2.242 (0.03412) [0.08644; 
0.7114] [0.1131; 0.3414] [0.1145; 0.2604] [0.008792; 0.2593] [0.7; 0.0052] [1; 0.0007]} / {(0.9776) (0.8) 
(0.0005)2 [0.2451; 0.2708] [0.297; 0.2673] [-0.0005; 0.254] [0.14; 0.252] [0.7; 0.0045]}; g55(s) = {2.242 
(0.13) (0.03) [0.1079; 0.7099] [0.07069; 0.341] [0.03; 0.2593] [0.7; 0.0052] [1; 0.0007]} / {(0.9776) (0.8) 
(0.12) (0.0005)2 [0.2451; 0.2708] [-0.0008; 0.254] [0.3; 0.25] [0.7; 0.0045]}; g66(s) = {2.242 (0.02584) 
[0.08644; 0.7114] [0.1131; 0.3414] [0.1145; 0.2604] [0.008792; 0.2593] [0.7; 0.0052] [1; 0.0007]} / 
{(0.9776) (0.8) (0.0005)2 [0.2451; 0.2708] [0.297; 0.2673] [-0.0007; 0.254] [0.1687; 0.241] [0.7; 
0.0045]}. 
 
The diagonal MIMO QFT compensator consists of the same diagonal elements gii(s) as the non-diagonal 
compensator abovementioned, and gij(s) = 0, i ≠ j. 
 
The main elements of the 1-DOF H-infinity compensator are shown in Figs. 18-20. Their dc gains stay 
within the range [-15 dB, 26 dB]. The remaining 26 elements present a very low gain, going from -260 dB 
to -330 dB. 
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(a) 

 
(b) 

Fig. 18  Bode Diagram Compensators: non-diagonal and diagonal MIMO QFT in solid line,  
H-infinity in dashed line. (a) g33(s), (b) g66(s) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 19  Bode Diagram Compensators: non-diagonal MIMO QFT in solid line [also diagonal MIMO QFT for g11(s) and g55(s)], 
H-infinity in dashed line. (a) g11(s), (b) g15(s), (c) g51(s), (d) g55(s) 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 20  Bode Diagram Compensators: non-diagonal MIMO QFT in solid line [also diagonal MIMO QFT for 

g22(s) and g44(s)], H-infinity in dashed line. (a) g22(s), (b) g24(s), (c) g42(s), (d) g44(s) 
 

3.6 Comparative evaluation 

This section shows a comparative analysis of the sequential non-diagonal MIMO QFT controller, designed 
above for the 6x6 Darwin-type Flyer, with both sequential diagonal MIMO QFT and H-infinity 
controllers. First, comparative Bode plots of the compensators are shown. Then, time performance results 
are presented (astronomical requirements), followed by open-loop bandwidth, and forces and torques 
comparison (engineering requirements). Finally, the stability objectives and the order of each compensator 
are analyzed (control requirements). 
 

3.6.1 Compensators Bode Plots 

The Bode plots are presented for the compensators of the non-diagonal MIMO QFT (solid line) in 
comparison with those of the H-infinity (dashed line). Note that, in this case, the diagonal MIMO QFT 
method yields the same diagonal compensators as the non-diagonal MIMO QFT technique. Fig. 18 
presents the results for the two SISO subsystems g33(s) and g66(s), (a) and (b) respectively. Fig. 19 plots 
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the compensators of the 2x2 MIMO subsystem composed of g11(s), g15(s), g51(s) and g55(s) elements. The 
g22(s), g24(s), g42(s) and g44(s) compensator elements that conform the other 2x2 MIMO subsystem are 
shown in Fig. 20. Note that g15(s) and g24(s) have been set to zero in the non-diagonal MIMO QFT design. 
Additionally, according to the RGA results in (55) the remaining elements of the controller matrix G(s) 
designed with this technique equal zero. By contrast, those 26 elements present a non-zero, although very 
small, magnitude response when they are designed with the H-infinity technique. Finally, the off-diagonal 
elements of the diagonal MIMO QFT are obviously zero. 
 

Table V. Time simulation performance with the three controllers 

 Specification Requirement Benchmark 
Non-diagonal 
MIMO QFT 
Controller 

Diagonal 
MIMO QFT 
Controller 

H-infinity 
Controller 

1 Maximum Position 
Error X (µm) < 1 µm B1 

B2 
0.0131 
0.0816 

0.0131 
0.0816 

0.0293 
0.511 

2 Maximum Position 
Error Y (µm) < 1 µm B1 

B2 
0.0120 
0.0120 

0.0120 
0.0120 

0.0299 
0.0299 

3 Maximum Position 
Error Z (µm) < 1 µm B1 

B2 
0.0288 
0.0288 

0.0288 
0.0288 

0.0292 
0.0292 

4 Maximum Attitude 
Error X (mas) < 25.5 mas B1 

B2 
25.27 
25.27 

25.31 
25.31 

25.95 
25.95 

5 Maximum Attitude 
Error Y (mas) < 25.5 mas B1 

B2 
22.91 
22.55 

22.99 
23.75 

23.21 
28.91 

6 Maximum Attitude 
Error Z (mas) < 25.5 mas B1 

B2 
21.15 
21.15 

21.15 
21.15 

22.84 
22.84 

7 
Std. Deviation of 
Position Error X 

(µm) 
< 0.33 µm B1 

B2 
0.00275 
0.0511 

0.00276 
0.0511 

0.00686 
0.341 

8 
Std. Deviation of 
Position Error Y 

(µm) 
< 0.33 µm B1 

B2 
0.00265 
0.00265 

0.00266 
0.00266 

0.00722 
0.00722 

9 Std. Deviation of 
Position Error Z (µm) < 0.33 µm B1 

B2 
0.00668 
0.00668 

0.00668 
0.00668 

0.00691 
0.00691 

10 
Std. Deviation of 
Attitude Error X 

(mas) 
< 8.5 mas B1 

B2 
5.57 
5.57 

5.57 
5.57 

5.68 
5.68 

11 
Std. Deviation of 
Attitude Error Y 

(mas) 
< 8.5 mas B1 

B2 
5.76 
5.80 

5.76 
5.85 

6.01 
8.23 

12 
Std. Deviation of 
Attitude Error Z 

(mas) 
< 8.5 mas B1 

B2 
4.83 
4.83 

4.83 
4.83 

5.00 
5.00 

13 
Maximum Actuator 
Force Command X 

(N) 
< 1.5e-4 N B1 

B2 
1.94e-6 
3.94e-6 

1.94e-6 
3.94e-6 

7.42e-7 
3.31e-6 

14 
Maximum Actuator 
Force Command Y 

(N) 
< 1.5e-4 N B1 

B2 
1.86e-6 
1.86e-6 

1.86e-6 
1.86e-6 

6.68e-7 
6.68e-7 

15 
Maximum Actuator 
Force Command Z 

(N) 
< 1.5e-4 N B1 

B2 
5.94e-7 
5.94e-7 

5.94e-7 
5.94e-7 

5.61e-7 
5.61e-7 

16 
Maximum Actuator 
Torque Command X 

(Nm) 
< 1.5e-4 N m B1 

B2 
8.68e-7 
8.68e-7 

8.71e-7 
8.71e-7 

1.03e-6 
1.03e-6 

17 
Maximum Actuator 
Torque Command Y 

(Nm) 
< 1.5e-4 N m B1 

B2 
1.05e-6 
1.06e-6 

1.05e-6 
1.06e-6 

1.15e-6 
1.16e-6 

18 
Maximum Actuator 
Torque Command Z 

(Nm) 
< 1.5e-4 N m B1 

B2 
1.08e-6 
1.08e-6 

1.08e-6 
1.08e-6 

1.27e-6 
1.27e-6 
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3.6.2 Astronomical Requirements 

Time simulations are performed for 300 random dynamics within the uncertainty range (MonteCarlo 
analysis) in the original ESA benchmark simulator (B1) described in Section 3.1 and in a complementary 
benchmark (B2), both developed under Matlab/Simulink. The latter just adds to B1 a low frequency 
disturbance force at plant input along the X-axis (magnitude: 2 µN, frequency: ω = 0.05 rad/sec) in order 
to consider disturbance rejection and coupling attenuation at low frequencies. In each simulation, the 
criteria appearing in Table IV are computed over the entire simulation time (i.e. 5000 sec). 
In order to characterize the minimum performance obtained, the worst results reached by every controller 
are presented in Table V. In other words, for each controller, the greatest value over the 300 uncertain 
cases is shown for the maximum and the standard deviation of position and attitude errors, as well as for 
maximum actuator commands, in all axes. Then, it is possible to verify whether the worst performance 
still respects the requirement. The bold number in every row of Table V represents the best result (best 
control strategy) for every particular specification. 
 
Position errors (1,2,3,7,8,9 –Table V) 

By inspecting Table V, it is found that the performance obtained in time simulations is very good 
concerning position accuracy, since the requirements are easily fulfilled (an improvement of two orders of 
magnitude with respect to the specification is achieved in benchmark B1, and at least one order of 
magnitude in benchmark B2) for maximum and standard deviation values. The non-diagonal MIMO QFT 
design either equals or slightly improves the diagonal MIMO QFT. Both QFT controllers improve the H-
infinity results for the two benchmarks. 
 
Attitude errors (4,5,6,10,11,12 –Table V) 

The specification for the highest attitude error is harder to meet mainly because of the effect of the flexible 
modes. Some of the maximum attitude values of the H-infinity even exceed the 25.5 mas required: see 
benchmark B1 (4 –Table V) and benchmark B2 (4,5 –Table V). Again, the MIMO QFT methodologies 
improve the results of the H-infinity controller in the six attitude error cases (4,5,6,10,11,12 –Table V). 
 
Once more, the non-diagonal MIMO QFT either equals or improves the diagonal QFT controller results. 
The greatest differences between both controllers can be observed at the Attitude Error along the Y-axis 
(5,11 –Table V), especially for benchmark B2. There, the non-diagonal design decreases the standard 
deviation attitude error by 0.85 % (11 –Table V) and the maximum attitude error by 5.05 % (5 –Table V) 
with respect to the values reached by the diagonal compensator. These improvements could turn out to be 
relevant to the astronomical mission. Their achievement is due to the fact that the off-diagonal 
compensators have been designed to minimize the coupling at low frequencies, which are principally 
stressed in the second benchmark. 
 

3.6.3 Engineering Requirements 

 
Saturation limits. Actuator commands (13,14,15,16,17,18 –Table V) 

As can be seen in Table V, actuation is very small and far below the saturation limits. The results for the 
three controllers remain at similar values (13,14,15,16,17,18 –Table V). 
 
Open-loop Bandwidth Comparison 

The open-loop cross-over frequency results of the six SISO loop subsystems are shown in Table VI. These 
measures correspond to the smallest frequencies in Hz where the transfer functions of the open-loop of 
each SISO subsystem pii(s) gii(s) [without the coupling elements pij(s), i ≠ j] are equal to 0 dB. The 
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minimum performance for each of the three designs has been established as the minimum bandwidth value 
over the 300 random satellite dynamics. Obviously, the bandwidth results for the two MIMO QFT designs 
coincide since their diagonal compensators are the same. A value of 0.01 Hz is considered a good 
compromise choice for bandwidth. Since the frequencies of the first flexible modes are within the range 
[0.05, 0.5] Hz, the open-loop cross-over frequencies for attitude and position are tuned to be as high as 
possible while simultaneously preventing the flexible modes from disturbing the system output 
performance. 
 

Table VI. Frequency performance with the three controllers 

 Requirement 
Non-diagonal 
MIMO QFT 
Controller 

Diagonal MIMO 
QFT Controller 

H-infinity 
Controller 

Position Bandwidth X (Hz) 0.01 Hz 0.0464 0.0464 0.0229 
Position Bandwidth Y (Hz) 0.01 Hz 0.0472 0.0472 0.0206 
Position Bandwidth Z (Hz) 0.01 Hz 0.0212 0.0212 0.0205 
Attitude Bandwidth X (Hz) 0.01 Hz 0.00949 0.00949 0.0102 
Attitude Bandwidth Y (Hz) 0.01 Hz 0.0102 0.0102 0.0102 
Attitude Bandwidth Z (Hz) 0.01 Hz 0.00883 0.00883 0.0102 

12.73 (Max) 11.51 (Max) 4.70 (Max) ( )ω
ω

jTmax  (dB) <6 dB 5.64 (Mean) 5.55 (Mean) 4.69 (Mean) 
13.11 (Max) 12.05 (Max) 6.24 (Max) ( )ω

ω
jSmax  (dB) <6 dB 6.69 (Mean) 6.60 (Mean) 5.48 (Mean) 

 
For the position transfer functions, the three controllers exceed the 0.01 Hz recommendation (two and 
even four times depending on the controller and the axis). However, the flexible modes mostly affect the 
attitude transfer functions and do not impose such strong constraints on the position transfer functions. 
Consequently, it is possible to go over 0.01 Hz for the position loops, as is proved by the satisfying time 
domain results in Table V. 
 
For the attitude transfer functions, the open-loop cross-over frequencies are around 0.01 Hz for the H-
infinity and for both the non-diagonal and diagonal MIMO QFT designs. 
 

3.6.4 Control Requirements 

 
Stability Objectives 

Stability and performance specifications are essentially described as mathematical expressions ready to be 
used during the design process of the controller. These expressions usually differ from one control 
methodology to another provided they are based on distinct approaches, which is the case of H-infinity 
and QFT-based methodologies. In this paper the stability specifications have been defined in two different 
ways:  
 
a) Stability conditions of Section 2.6 for MIMO QFT (Nyquist criterion for sequential methods). 
b) Margins on ( )ω

ω
jmaxT  and ( )ω

ω
jmax S  for H-infinity (classical criterion for MIMO systems). 

 
The non-diagonal and the diagonal MIMO QFT controllers fulfill the stability conditions for sequential 
procedures defined in Section 2.6. The H-infinity compensator fulfills the margins of T(s) and S(s) defined 
in Table VI. With respect to this classical interpretation of robust stability, the QFT approaches respect 
them in most of the cases (mean), but not in several cases (max). This is due to the fact that these 
interpretations of the stability margins (which are indeed a margin of a margin) are not integrated as a 
design specification in the core of QFT techniques. 
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Since stability and performance specifications are only interpretations of the functional requirements 
(astronomical and engineering requirements –Table IV-), the designer should be aware of which tradeoffs 
need to be made. Essentially, the interpretation of reality in terms of a particular theory can never replace 
the real world itself. In the absence of the real system implementation or a suitable prototype to be used 
instead, the designer must manage time domain simulations in order to verify the control system behavior 
[1]. That interpretation was done and successfully validated in the previous sections of the paper. 
 
Additionally, the classical margins on ( )ω

ω
jmaxT  and ( )ω

ω
jmax S  are stability MIMO margins, but they do 

not include phase information. This fact makes them sufficient, but not necessary conditions and could 
yield very conservative controllers in some situations. Although the three methods are robust stable 
according to their own requirement and to time domain simulations, future research work to re-interpret 
both types of robust stability conditions and margins constitute one of the next research objectives.  
 
Controller Complexity and Order  

The number of operations that have to be performed per sampling period may place restrictions on the 
compensator design. The implementation of a controller based on the state space representation differs 
from that based on transfer functions. The former appears to have a common denominator for every 
element of the compensator when it is transformed into transfer function description and the latter does not 
actually need it. Indeed, the expression of each control signal in a transfer function matrix depends on its 
corresponding row of the compensator matrix. But even there, common denominators are not needed. The 
control signal ui(s) is computed as the sum of signals generated by every compensator in the i-th row. 
 
In order to make a realistic comparison of the computational cost of the different controllers (non-diagonal 
MIMO QFT, H-infinity and diagonal MIMO QFT), the number of sums and multiplications computed in 
each sample at the final implementation are analyzed. Following the same discretization process, the 
values in Table VII are obtained. The compensator matrix of the H-infinity design expressed in transfer 
function description presents 36 elements having 42nd order. The diagonal MIMO QFT design consists of 
six diagonal compensators going from 5th to 14th order. The non-diagonal MIMO QFT design consists of 
eight compensators going from 3rd to 14th order. 
 

Table VII. Computational cost per sampling for the three controllers 

Controller Number of Multiplications Number of Sums 
Non-diagonal MIMO QFT 130 124 

H-infinity 2994 2988 
Diagonal MIMO QFT 116 110 

 
 

4.0 COMBINING SWITCHING & ROBUST QFT CONTROL STRATEGIES TO 
IMPROVE CLASSICAL CONTROL[8] 

This section introduces a methodology to design a family of robust controllers able to go beyond the 
classical linear limitations. Combining robust designs and stable switching, the new controllers optimize 
the time response of the system by fast adaptation of the controller parameters during the transient 
response according to certain rules based on the amplitude of the error. The methodology is based on both 
a new graphical stability criterion for switching linear systems and the robust quantitative feedback theory 
(QFT). 
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4.1 Introduction 
Switching control has demonstrated to be an efficient tool in achieving tight performance specifications in 
control systems [15-16]. The way to reach this enhancement is by designing various parallel controllers 
with different characteristics, and continuously selecting among them the one that governs the system 
(Fig. 21). Thus, performance specifications that are not achievable by a simple linear controller, as the 
limitation theory predicts [17-18], can be attained through suitable switching rules. 
 
One of the main issues in switching control techniques is that the system stability is not assured a priori, 
even if the switching is made between stable controllers. This is the reason why most of the current 
literature about switching systems is still devoted to stability issues. See [19-20] for general results about 
stability criteria applied in some particular cases. 
 

4.2 Switching & robust QFT control 

4.2.1 Switching Systems Stability 

 
Fig. 21 shows a general scheme of a switching system. A set of controllers is designed and a supervisor 
selects the most suitable one, depending on the system and environment parameters. 
 

 
 

Fig. 21 Switching control scheme. 
 

One of the main difficulties found when switching techniques are applied is that, in general, the system 
stability is not assured, even if switching is made between stable controllers. Some extra conditions must 
be met. In particular, it has been proved that a system  
 
 { } Hurwitz,    ,,...,)(   ),()()( 1 imttxttx AAAAA =∈= A   (71) 

 
with arbitrary switching within the set of matrices A is exponentially stable if and only if there exists a 
common Lyapunov function (CLF) for all Ai in the set A [22]. It has also been proved that the existence of 
a common quadratic Lyapunov function (CQLF) is a sufficient condition for exponential stability [23]. In 
this context, the main issue in linear switching systems is finding conditions under which the existence of 
a CQLF is assured. In particular, it has been proved that the circle criterion provides necessary and 
sufficient conditions for the existence of a CQLF for two systems in companion form [24-26], that is, the 
systems 
 )()( txtx A=   (72) 
 
 )()()( txtx Tg∆A −=   (73) 
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both Hurwitz,  with 
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have a CQLF if and only if 
 
 ,=>−+ − ω ,0})(Re{1 1 jssT gAI∆    for all frequency ω.  (75) 
 
This paper considers stability for arbitrary switching between two closed-loop systems with transfer 
functions T1(s) = L1(s)/[1+L1(s)] and T2(s) = L2(s)/[1+L2(s)], both stable, where L1(s) = P(s)G1(s) and L2(s) 
= P(s)G2(s)  are proper, have the same number of poles, and the same number of zeros. In this case, the 
effect of switching is to change the gain and the position of poles and zeros. The open loop transfer 
functions of both systems are  
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Note: For the sake of clarity in the subsequent analysis, a general expression has been used where the 
order or the numerator is one less than that of the denominator. If it were not the case, then the coefficients 
bn-1, etc, would be zero. 
 
The closed-loop transfer functions are 
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where the characteristic equations are 
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with iii bae +=   and  .iii bae ∆+∆=∆  
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Using these expressions for the coefficients ei and ∆ei, the matrices A, g, and ∆ are defined. Now the circle 
criterion is applied to guarantee stability under arbitrary switching. As  
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After some simple manipulation, 
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the condition can be expressed in the following form: 
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As this formulation of the circle criterion is applied to open-loop transfer functions, it is enough to check it 
at positive frequencies due to symmetry. Condition (84) is then equivalent to 
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Let us denote 
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Using the triangle inequality, a sufficient condition for (85) is 

 
 )ω(α90)ω(φ12 −<  deg for all .0ω ≥  (88) 
 
Then, the criterion can be applied graphically in both the Nyquist and the Nichols diagrams. In the first 
case, the criterion may be expressed by saying that L1(jω) and L2(jω) must be inside of an arc of             
[90 – α(ω)] deg around the point (-1,0) at each frequency. In the Nichols diagram a condition over angles 
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is more easily checked: plotting the frequency response of  [1 + L1(jω)] and [1 + L2(jω)], the distance 
φ12(ω) on the horizontal axis at each frequency must be less than [90 – α(ω)] deg.  
 
It must be noted that the function α(ω) can be expressed in the following form: 
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so it may be considered as a measurement of the controller poles change, as Fig. 22 shows. Consequently, 
the larger the movement made by the poles, the bigger the conservativeness introduced by the triangle 
inequality at (88). Note that for each frequency ωi there is a different angle α(ωi). 
 

 
 

Fig. 22 α(s) for a system with three switching poles. α(ωi) = α1(ωi) + α2(ωi) + α3(ωi). 
 
At this point two questions arise. Firstly, the criterion presented above can be applied to switching 
between two isolated controllers with the same structure. However, it is possible that the designer wants to 
do switching among more than one system, or even among an infinite number of systems, which can also 
be considered as a linear parameter varying (LPV) system, where the controller varies continuously. 
Secondly, real systems present uncertainty, so the criterion must be modified in some way to take the 
uncertainty into account. The next discussion undertakes both issues. 
 
If the switching is made among a set of controllers, the criterion has to be accomplished by every pair of 
them. Checking this condition may be an impossible task if there is more than one pole moving, because 
the angle α is different for each pair of controllers. For this reason, if we are interested in a controller 
whose parameters change continuously with the error, we will permit only variable gain and zeros. Then, 
the angle α(ω) is null for every frequency, and the only condition to satisfy is that the angle between any 
two possible systems Li(jω) and the critical point (-1,0) is less than 90 deg. Moreover, under this premise 
the conservativeness introduced in (88) vanishes. The condition can be checked graphically with a grid of 
the possible open-loop systems that the controller variation can generate, as Fig. 23a shows. The 
maximum angle ϕ12(ω) must be contained in a 90 deg arc from (-1,0). In the Nichols Plot, the way to 
apply the criterion is to draw the grid of possible 1+Li(jω) systems, and check that the maximum 
horizontal distance is less than 90 deg. Fig. 23b illustrate the criterion in the Nichols Plot.  
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Using similar arguments, it is also easy to deal with uncertainty. For an uncertain system, the template 
ℑP(jω) is the area of the possible plants within the uncertainty at the frequency ω. If this system is 
governed by a switching controller, each point of the template can change its position due to switching. 
From this point of view, switching can be considered as a mechanism that modifies the position and shape 
of the templates of  [1 + Li(jω)]. To be sure that the switching is stable, the above criterion must be applied 
to the whole template. 
 

(a)                (b) 
 

Fig. 23 Criterion for continuous switching: a) Complex plane. b) Nichols plot. 
 

It has been traditionally considered in control theory that uncertainty changes the plant slowly in 
comparison with the system dynamics. If the switching laws depend on the state of the system, then the 
switching is much faster than changes due to uncertainty. Consequently, for each point of the departure 
template there is only one corresponding point in the arrival template. Furthermore, it can be assumed that 
uncertainty does not affect the angle α. 
 
Then the Nichols Chart is a very clear diagram to test the stability of the uncertain switching system. Fig. 
24 shows the templates of [1+Li(jω)] and the application of the method. If during the displacement of each 
point of the first template to its corresponding point of the second one, the maximum horizontal distance 
between any two points of this path is less that 90 deg, the stability condition is satisfied at that particular 
frequency. Although it is a laborious task to check each point of the template at each frequency, usually it 
is not necessary because the whole set of templates are much closer together than the critical distance. 
 

 
 
 

Fig. 24 Stability criterion on the Nichols Chart 
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4.2.2 Methodology 
 
Quantitative feedback theory [1] has demonstrated to be an excellent tool dealing with the compromises 
between several, often conflicting, control specifications. Its transparent design process allows the 
designer to consider all of them simultaneously and in the same plot. The QFT philosophy permits to 
design a controller that satisfies the set of performance specifications with every plant within the 
uncertainty, using the minimum amount of feedback. 
 
However, as any linear methodology, QFT produces linear controllers, and consequently it is subject to 
the performance limitations of linear systems. Briefly speaking, the way in which a system can improve its 
performance is limited by the reduction of the stability margins. Although those limitations are usually 
expressed in the frequency domain, they have consequences in the time response of the system.  
 
As limitations are due to the linear character of the system, it seems that the key is to use nonlinear 
controllers. Some work has been done in that respect, and some elegant solutions have been performed 
[27-28]. However, the use of nonlinear elements may imply some problems, like instability or limit cycles, 
as well as the lack of simple design tools.  
 
Another solution to overcome the linear limitations is to prioritize some specifications over others 
according to the state of the system at each time. In other words, do switching to select the appropriate 
controller, keeping always the linear character. A particular way to do this is to use the error amplitude as 
the switching signal. Then, when the output is far from the reference, the system needs to be more stable, 
and also faster, but precision is not so necessary. Conversely, when there is little error, some amount of 
stability margin can be sacrificed in order to increase the low frequency gain, and therefore the precision 
and the disturbance rejection. These ideas, combined with the QFT method, lead to a new design 
procedure, listed in the next four steps: 
 
Step 1: Obtain a preliminary linear controller for the system, usually by applying QFT: represent the 
parametric and/or non-parametric uncertainty with the templates, define the frequency domain 
specifications, generate the QFT-bounds and design a linear controller by loop-shaping. 
 

Step 2: The preliminary QFT controller is the starting point to design two extreme controllers with the 
same structure, where gain and zeros can vary freely, but poles stand still. The characteristics of these two 
controllers must be related with the error amplitude. As Boris Lurie explains [16], when the error is large 
the bandwidth must increase to get fast response, but the loop gain does not need to be high. And for small 
errors, the bandwidth is reduced to avoid the effects of noise, while the low frequency gain is increased to 
minimize the jitter and the tracking error.  

In terms of loop-shaping, these rules can be considered as: 1) for small errors, increase gain and move 
further away the zeros, and 2) for high errors, decrease gain and bring nearer the zeros. Apart from this, 
reasonable stability margins must be maintained, although they could be considerably reduced for the 
small error situation. 
 
Step 3: The robustness of the extreme designs guarantees that both linear systems are stable for every plant 
within the uncertainty. However, it is necessary to apply the criterion presented in the previous section 
[see equation (88) with α = 0] to assure that the switching between both controllers is also stable. 
 
One advantage of this graphical criterion is that it gives information about the frequencies where 
conditions are not satisfied, so the designer can go back to Step 2 and change the extreme controllers in 
this region. 
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Step 4: Select the switching function. Simulations of the system governed by each controller are 
performed. Looking at the time response of the designs, the function that relates the error amplitude with 
the position of the controller parameters is designed (see for example Fig. 27). 

4.3 Application: Remotely Controlled Reconnaissance Vehicle 

This section presents a simple example to illustrate the new methodology introduced in section 4.2. It 
consists in a remotely controlled reconnaissance vehicle (see [29] for details). 
 
The plant to be controlled is: 
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Step 1 
The controller designed by Dorf (see [29]) is: 
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Step 2 
Now, starting from G0(s), the extreme controllers G1(s) and G2(s), for low and high errors respectively, are 
designed observing the guidelines exposed in section 4.2. The elements to be varied are the gain and a 
zero. The new controllers are 
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and their frequency domain characteristics can be viewed in the Bode plot of Fig. 25. As is appreciated, 
G1(s) presents a higher low-frequency gain and a dominant pole, while in G2(s) the low-frequency gain is 
lower and the zero is the dominant one. Their robust stability margins are checked with QFT tools. 
 

 
 

Fig. 25  Bode plot of the three controllers 
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Step 3 
Fig. 26 shows the templates T[1 + L1(jω)] and T[1 + L2(jω)] at various representative frequencies [1, 2, 3, 
5] rad/sec, and the Nichols plot of each nominal function [1 + Li0(jω)]. As there is no variation in any pole 
of the controller, the angle α is cero for all frequencies, and the only thing to check is that, in the path from 
each point of the first template to its corresponding point of the second template, the maximum horizontal 
distance between two points is not higher than 90 deg [see (88) with α = 0].  
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Fig. 26  Stability study of the switched systems on the Nichols chart 

 
Step 4 
The switching controller Gswi(s) presents the following expression: 
 

 ( )( )
( )1

8.13.2715)(
+

−+−
=

s
ksksGswi  (94) 

 
where the parameter k is given by a function  → [0, 1] of the error signal. In order to reduce possible 
impulse effects, a smooth function (95) has been selected instead of a relay-type or saturation-type 
function, 
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⎝
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where the values of the parameters have been adjusted for optimal performance by simulation. Some 
further research could be devoted to finding the optimum shape for the switching functions. The shape of 
the switching function is shown in Fig. 27. 
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Fig. 27. Switching function 

 
Validation 
The compensators are verified in the time domain for the most representative plants selected from the set 
of uncertain plants. Fig. 28 shows the time response of the control system (nominal plant [29]) to a step 
input reference tracking (t = 1 sec) and a step disturbance (t = 15 sec). The response of the controller 
designed with the new methodology (switching controller, Gswi) combine the best characteristics of the 
extreme controllers (G1 and G2), improving the response of the original fixed controller (G0).   
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Fig. 28  Response to a step input reference tracking and a step disturbance 
 

5.0 CONCLUSIONS 

Since the very first ideas suggested by Horowitz in 1959 until now, the Quantitative Feedback Theory 
(QFT) has been successfully applied to many control systems: linear and non-linear, stable and unstable, 
SISO and MIMO, minimum and non-minimum phase, with time-delay, with lumped and distributed 
parameters, multi-loop, etc [1]. The method searches for the controller that guarantees the achievement of 
the required performance specifications for every plant within the existing model uncertainty. QFT 
highlights the trade-off (quantification) among the simplicity of the controller structure, the minimization 
of the ‘cost of feedback’, the quantified model uncertainty and the achievement of the desired performance 
specifications at every frequency of interest. 
 
The first part of the paper summarized a methodology to design sequential non-diagonal QFT controllers 
for multi-input-multi-output MIMO systems with uncertainty. The second part demonstrated the feasibility 
of that methodology to control UAVs, in particular the position and attitude control of a 6x6 MIMO 
Darwin-type spacecraft with large flexible appendages. The third part of the paper introduced a new 
practical methodology to design robust controllers that work under a switching mechanism. The method is 
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capable of optimising performance and stability simultaneously, going beyond the classical linear 
limitations and giving a solution for the well-known robustness-performance trade-off. Based on the 
frequency domain approach, the method combines a graphical stability criterion for switching linear 
systems and the robust quantitative feedback theory. 
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